Functional analysis of human microsomal epoxide hydrolase genetic variants.

نویسندگان

  • Vinayak P Hosagrahara
  • Allan E Rettie
  • Christopher Hassett
  • Curtis J Omiecinski
چکیده

Human microsomal epoxide hydrolase (EPHX1) is active in the metabolism of many potentially carcinogenic or otherwise genotoxic epoxides, such as those derived from the oxidation of polyaromatic hydrocarbons. EPHX1 is polymorphic and encodes allelic variation at least two amino acid positions, Y113H and H139R. In a number of recent molecular epidemiological investigations, EPHX1 polymorphism has been suggested as a susceptibility factor for several human diseases. To better evaluate the functional contribution of EPHX1 genetic polymorphism, we characterized the enzymatic properties associated with each of the respective variant proteins. Enzymatic profiles were evaluated with cis-stilbene oxide (cSO) and benzo[a]pyrene-4,5-epoxide (BaPO), two prototypical substrates for the hydrolase. In one series of experiments, activities of recombinant EPHX1 proteins were analyzed subsequent to their expression using the pFastbac baculovirus vector in Spodoptera frugiperda-9 (Sf9) insect cells, and purification by column chromatography. In parallel studies, EPHX1 activities were evaluated with human liver microsomes derived from individuals of known EPHX1 genotype. Using the purified protein preparations, rates of cSO and BaPO hydrolysis for the reference protein, Y113/H139, were approximately 2-fold greater than those measured with the other EPHX1 allelic variants. However, when activities were analyzed using human liver microsomal fractions, no major differences were evident in the reaction rates generated among preparations representing the different EPHX1 alleles. Collectively, these results suggest that the structural differences encoded by the Y113H and H139R variant alleles exert only modest impact on EPHX1-specific enzymatic activities in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human microsomal epoxide hydrolase: 5'-flanking region genetic polymorphisms.

Microsomal epoxide hydrolase (mEH) catalyses the hydrolysis of xenobiotic epoxides, including various epoxide derivatives of the procarcinogenic polyaromatic hydrocarbons. Levels of mEH enzymatic activity among different cell types and between individuals within the population vary considerably. Genetic polymorphisms within the structural region of the human mEH gene exist and appear to contrib...

متن کامل

Genetic variants of microsomal epoxide hydrolase and glutamate-cysteine ligase in COPD.

The genetic factors that contribute to the development of chronic obstructive pulmonary disease (COPD) are poorly understood. Many candidate genes have been proposed, including enzymes that protect the lung against oxidative stress, such as microsomal epoxide hydrolase (EPHX1) and glutamate-cysteine ligase (GCL). To date, most reported findings have been for EPHX1, particularly in relation to f...

متن کامل

Genetic polymorphism of epoxide hydrolase and glutathione S-transferase in COPD.

Genetic susceptibility to the development of chronic obstructive pulmonary disease (COPD) might depend on variation in the activities of enzymes that detoxify cigarette smoke products, such as microsomal epoxide hydrolase (mEPHX) and glutathione S-transferase (GST). It was investigated whether polymorphisms in these genes had any association with susceptibility to COPD and COPD severity. The ge...

متن کامل

EPHX1 polymorphisms, COPD and asthma in 47,000 individuals and in meta-analysis.

We tested the hypothesis that two well-characterised functional polymorphisms of the microsomal epoxide hydrolase gene (EPHX1), T113C and A139G, may influence susceptibility to chronic obstructive pulmonary disease (COPD) and asthma. We genotyped participants from the Copenhagen City Heart Study (n = 10,038) and the Copenhagen General Population Study (n = 37,022) for the T113C and A139G varian...

متن کامل

Association of Functional Variants of Phase I and II Genes with Chronic Obstructive Pulmonary Disease in a Serbian Population

BACKGROUND Chronic obstructive pulmonary disease (COPD) is a complex disorder characterized by increased oxidative stress. Functional genetic variants of phase I and II genes are implicated in oxidants-antioxidants imbalance and may be involved in COPD development. In this study, we aimed to investigate the role of cytochrome P450 (CYP), glutathione S-transferase (GST) and microsomal epoxide hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemico-biological interactions

دوره 150 2  شماره 

صفحات  -

تاریخ انتشار 2004